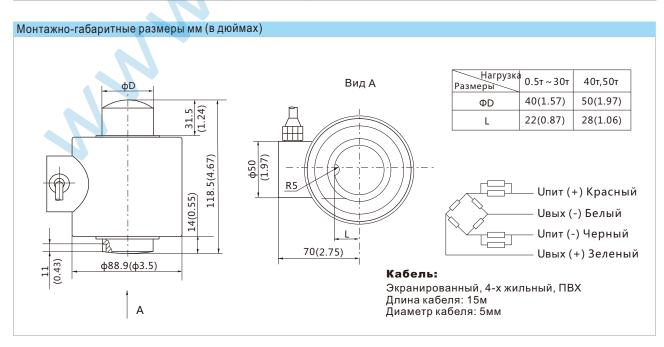


Стержневой тип датчиков применяется для изготовления/модернизации автомобильных, вагонных, многотонных бункерных весов, а также в испытательных стендах и контрольно-измерительном оборудовании. Благодаря высоким метрологическим характеристикам этот тип датчиков находит широкое применение во многих промышленных системах весоизмерения.

Тензодатчик ВМ14С может применяться в тяжелых промышленных условиях (щелочных и кислотных средах). Корпус выполнен из нержавеющей стали с применением лазерной сварки, класс защиты тензодатчика ІР68 (полная пыле- и влагозащищенность).


Основные особенности:

- Нагрузка: **от 0.5т до 50т**
- Материал исполнения: нержавеющая сталь
- Класс защиты: ІР68
- Гарантия: 30 месяцев

Аксессуары:

• BY-14-103 • BY-14-117 • HM-14-403 • HY-14-104 • HM-14-401 • BM-14-414

Технические характеристики:						
Максимальная нагрузка	Т	0.5/1/2/3/5/10/20/25/30/40/50				
Класс точности		C2	C3	C4	A5S	A5M
Максимальное количество поверочных интервалов	Nmax	2000	3000	4000	5000	5000
Минимальный поверочный интервал	Vmin	Emax/5000	Emax/10000	Emax/14000	Emax/15000	Emax/15000
Общая ошибка	(%НПВ)	≤±0.030	≤±0.020	≤±0.018	≤±0.018	≤±0.026
Ползучесть	(%HΠB/30min)	≤±0.024	≤±0.016	≤±0.012	≤±0.012	≤±0.017
Температурное отклонение чувствительности	(%H∏B/10°C)	≤±0.017	≤±0.011	≤±0.009	≤±0.009	≤±0.013
Температурное отклонение нуля	(%H∏B/10°C)	≤±0.023	≤±0.015	≤±0.010	≤±0.010	≤±0.014
Выходная чувствительность	(мВ/В)	2.0±0.002				
Входное сопротивление	(Ом)	700±7				
Выходное сопротивление	(Ом)	703±4				
Сопротивление изоляции	(МОм)	≥5000(50VDC)				
Баланс нуля	(%НПВ)	1.0 -10 +40				
Диапазон термокомпенсации	(℃)	-35 +70				
Рабочий диапазон температур	(°C)	5 12(DC)				
Диапазон напряжения питания	(B)	18(DC)				
Максимально допустимое напряжение питания	(B)	150				
Предельная нагрузка	(%НПВ)	300				
Разрушающая нагрузка	(%НПВ)					

